

Synthesis and crystal structure of the acetone solvate bis- $[(\mu-iodo)(bis-(diphenylphosphino)methane)platinum(II)]$ bis(tetrafluoroborate)

Francesco Neve, Alessandra Crispini, Mauro Ghedini* and Giovanni De Munno Dipartimento di Chimica, Università della Calabria, I-87036 Arcavacata (CS) (Italy)

(Received May 24, 1990; revised August 1, 1990)

dppm (dppm = bis(diphenylphosphino)methane) is a bidentate ligand whose versatility has been proven by the chemistry displayed by the large number of transition metal complexes which form [1-3].

In the case of halo-platinum compounds, it can give both mononuclear, $[PtX_2(dppm)]$ (X = Cl, Br, I) and binuclear, $[Pt_2X_2(\mu\text{-dppm})_2]$, compounds. The molecular structures of these species are examples of two different dppm coordination modes, namely chelated in $[PtX_2(dppm)]$ [4, 5] and bridged in $[Pt_2X_2(\mu\text{-dppm})_2]$ [6, 7]. Moreover, as a consequence of the geometry imposed by the dppm bridge, such binuclear complexes are characterized by a metal-metal bond.

In this report we describe the synthesis, characterization and crystal structure determination of $[Pt_2(\mu-I)_2(dppm)_2][BF_4]_2$, a new dppm-platinum compound containing a dihalo-bridged group.

Experimental

Preparation of compounds

The starting material $[Pt(I)_2(dppm)]$ was prepared following the procedures reported in the literature [5].

$[Pt_2(\mu-I)_2(dppm)_2][BF_4]_2$ (1)

The reaction was performed in an oxygen-free nitrogen atmosphere. In a typical preparation, to a suspension of $[Pt(I)_2(dppm)]$ (300 mg, 0.36 mmol)

in dichloromethane (15 ml), AgBF₄ (82 mg, 0.42 mmol) was added. The resulting yellow mixture was stirred at room temperature for 15 days. The white precipitate which formed after that time was filtered and compound 1 was obtained as a microcrystalline solid by recrystallization from white acetone-petroleum ether. Yield 57%. Anal. Found: C, 37.80; H, 2.82. Calc. for C₅₀H₄₄B₂F₈I₂P₄Pt₂: C, 37.85; H, 2.79%. $\Lambda_{\rm M}$ (10⁻³ mol cm⁻³ in nitromethane) = 129.22 Ω^{-1} mol⁻¹ cm². IR (KBr disc): $\nu = 1050 \text{ cm}^{-1}$ (B-F). ¹H NMR (300 MHz, CD₂Cl₂, TMS internal standard): $\delta = 5.13$ (t, ²J(PH) = 11.9 Hz, ${}^{3}J(PtH) = 90$ Hz, $P-CH_{2}-P$). ${}^{31}P$ NMR (121.5 MHz, CH₂Cl₂, 85% H₃PO₄ external standard): $\delta = -59.1$ (s, J(PtP) = 2994 Hz).

Physical measurements

Infrared spectra were recorded on a Perkin-Elmer 1330 spectrometer. ¹H and ³¹P NMR spectra were obtained on a Bruker WH 300 spectrometer. Conductivity measurements were performed using an LKB 5300 B Conductolyser conductivity bridge. Elemental analyses were carried out by the Microanalysis Laboratory of this Department.

X-ray data collection and refinement

A white crystal suitable for the structure analysis was obtained from acetone-petroleum ether and the intensities of X-ray reflections were measured on a Siemens R3m/V single crystal diffractometer.

Crystal data for $C_{50}H_{44}B_2F_8I_2P_4Pt_2 \cdot 2C_3H_6O$: M = 1702.4, a = 12.696(3), b = 12.272(2), c = 19.757(4)Å, $\beta = 97.81(2)^{\circ}$, V = 3050(1) Å³, Z = 2, $D_{calc} = 1.854$ $g \, \mathrm{cm}^{-3}$, F(000) = 1624, Mo K α radiation ($\lambda = 0.71073$), μ (Mo K α) = 57.97 cm⁻¹, monoclinic, space group $P2_1/n$. A crystal of $0.36 \times 0.22 \times 0.16$ mm was used to collect 6779 reflections in the range $3.0^{\circ} < 2\theta < 50^{\circ}$. Only 5396 independent reflections were observed $(R_{int}=0.0199)$. A correction for absorption (Ψ scan method [8]) was applied. The structure was solved by standard Patterson and Fourier methods and was refined by full-matrix least-squares with anisotropic thermal parameters for all non-hydrogen atoms. All hydrogen atoms were placed at calculated positions. The final cycles of refinement were carried out on the basis of 325 parameters for 3663 observed $(I > 3\sigma I)$. The last cycle gave R = 0.0370, $R_w = 0.0374$ (weighting scheme $w^{-1} = \sigma^2(F) + 0.0002F^2$), S = 1.93. All calculations were performed with SHELXTL [9] and the PARST [10] set of programs. See also 'Supplementary material'.

Results and discussion

The reaction between $[Pt(I)_2(dppm)]$ and $AgBF_4$ gives a white solid whose microanalytical data and

^{*}Author to whom correspondence should be addressed.

Pt(1)–I(1)	2.662(1)	Pt(1)-P(2)	2,243(2)	
Pt(1) - I(1a)	2.669(1)	P(1) - C(25)	1.840(1)	
Pt(1) - P(1)	2.240(2)	P(2)-C(25)	1.817(1)	
I(1)-Pt(1)-I(1a)	86.6(1)	P(1)-Pt(1)-P(2)	71.9(1)	
I(1) - Pt(1) - P(1)	173.0(1)	Pt(1)-I-Pt(1a)	93.4(1)	
I(1) - Pt(1) - P(2)	101.7(1)	Pt(1) - P(1) - C(25)	93.8(3)	
I(1a) - Pt(1) - P(1)	100.0(1)	Pt(1) - P(2) - C(25)	94.3(3)	
I(1a)-Pt-P(2)	171.5(1)	P(1)-C(25)-P(2)	92.0(4)	

TABLE 1. Selected bond distances (Å) and angles (°) in complex 1

conductivity measurements account for the $[Pt_2(I)_2(dppm)_2][BF_4]_2$ (1) stoichiometry. NMR spectroscopy shows the presence of two equivalent platinum-bonded dppm ligands, while the binuclear nature has been confirmed by X-ray structural analysis.

The crystal structure of complex 1 consists of diplatinum cations (Fig. 1), BF_4^- anions and acetone molecules of solvation. Selected bond distances and angles are given in Table 1.

In the unit cell only one [PtI(dppm)] moiety is present, repeated four times for the space group symmetry ($P2_1/n$, Z=4). The dimeric molecule is obtained from a [PtI(dppm)] moiety when a crystallographic center is applied.

The complex cation contains two platinum atoms, each of them bonded to a chelated dppm ligand and to two iodine atoms, in square planar environments. The metal coordination planes are coplanar and form a Pt_2I_2 rhombus with I-Pt-I and Pt-I-Pt angles of 86.6(1) and 93.4(1)°, respectively. The trend previously described for similar Pd_2X_2 fragments is then confirmed [11]. Moreover, as found for $[Pd(I)_2(dppm)]$ [12], the Pt-I distances (2.699(1) and 2.662(1) Å) as well as the Pt-P bond lengths (2.239(2)

Fig. 1. View of the cation $[Pt_2(\mu-I)(dppm)_2]^{2+}$ of compound 1 with the atomic numbering scheme.

and 2.242(2) Å) account for iodine and phosphorous coordinated in a mutually *trans* geometry. The Pt----Pt separation is 3.881(8) Å. The P-Pt-P-C skeleton is essentially planar with P-Pt-P and P-C-P angles of 71.9(1) and 92.1(4)°, respectively, which give rise, as usual, to a quite strained four membered P-M-P-C ring (M=Pd [13]; M=Rh [14]).

The BF₄⁻ anions are regular (B-F bonds and F-B-F angles in the ranges 1.29(3)-1.34(2) Å and 101.9(2)-114.0(2)°, respectively) and are involved in contacts with the cation through hydrogen bonds (i.e. $F(2^i)$ ---H(25b) = 2.48(1) Å, $F(4^i)$ ---H(6) = 2.47(1) Å: i=x-1, y-1, z).

The oxygen atoms of the two acetone molecules interact with phenyl hydrogens $(O^{i}-H(9)=2.56(1))$ Å: i=1-x, -y, -z; $O^{i}-H(21)=2.42(1)$ Å: $i=x-\frac{1}{2}$, $\frac{1}{2}-y$, $z+\frac{1}{2}$).

Supplementary material

Tables with the final atomic coordinates for the non-hydrogen atoms and for hydrogen atoms, the total bond distances (Å) and angles (°), the thermal parameters and a list of observed and calculated structure factors are available from the authors on request.

Acknowledgements

This work was supported by the Italian CNR and Ministero dell'Università e della Ricerca Scientifica. We thank Johnson-Matthey, Ltd., for a generous loan of K_2PtCl_4 .

References

- 1 R. J. Puddephatt, Chem. Soc. Rev., (1983) 99.
- 2 A. L. Balch, in L. H. Pignolet (ed.), Homogeneous Catalysis with Metal Phosphine Complexes, Plenum, New York, 1983.

- 3 B. Chaudret, B. Delavaux and R. Poilblanc, Coord. Chem. Rev., 86 (1988) 191.
- 4 F. G. Appleton, M. A. Bennet and I. B. Tomkins, J. Chem. Soc., Dalton Trans., (1976) 439.
- 5 M. P. Brown, R. J. Puddephatt, M. Rashidi and K. R. Seddon, J. Chem. Soc., Dalton Trans., (1977) 951.
- 6 M. P. Brown, R. J. Puddephatt, M. Rashidi, Lj. Manoiylovic-Muir, K. W. Muir, T. Solomun and K. R. Seddon, Inorg. Chim. Acta, 23 (1977) L33.
- 7 Lj. Manoiylovic-Muir, K. W. Muir and T. Solomun, Acta Crystallogr., Sect. B, 35 (1979) 1237.

- 8 A. C. T. North, D. C. Phillips and F. S. Mathews, Acta Crystallogr., Sect. A, 24 (1968) 351.
- 9 SHELXTL PLUS, Version 3.4, Siemens Analytical X-Ray Instruments Inc., Madison, WI, U.S.A., 1989. 10 M. Nardelli, Comput. Chem., 7 (1983) 95.
- 11 A. L. Rheingold and W. C. Fultz, Organometallics, 3 (1984) 1414.
- 12 J. A. Davis, A. A. Pinkerton, R. Syed and M. Vilmer, J. Chem. Soc., Chem. Commun., (1988) 47.
- 13 L. W. Steffen and G. I. Palenik, Inorg. Chem., 15 (1976) 2432.
- 14 M. Cowie and S. K. Dwight, Inorg. Chem., 18 (1979) 1209.